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Abstract
In the paper we have investigated some properties of the Barut–Giraradello
coherent states (BGCS) (the eigenstates of theSU(1, 1) lowering generatorK−)
for the Hamiltonian of the pseudoharmonic oscillator (PHO). By using these
states, the diagonal P -representation of the density operator is constructed as
a new result for this potential. In addition, we have calculated some thermal
expectation values for the quantum canonical gas of the PHOs. The calculations
using the BGCS representation seem to be much simpler and easier to program
than the corresponding calculations in other representations (e.g. the position
representation). At the end of the paper the time dependence of these states is
presented.

PACS numbers: 0365C, 3310C, 4250A

1. Introduction

It is well known that real molecular vibrations are anharmonic, but due to its mathematical
advantages the harmonic oscillator (HO) model is used. An anharmonic potential, which also
permits an exact mathematical treatment, is the so-called ‘pseudoharmonic oscillator’ (PHO)
potential. This potential was pointed out in [1], but recently interest in it has reappeared [2–8].

The effective potential of the PHO is

VJ (r) = mω2

8
r2

0

(
r

r0
− r0

r

)2

+
h̄2

2m
J (J + 1)

1

r2
(1)

where r0 is the equilibrium distance between the nuclei of the diatomic molecule, and
J = 0, 1, 2, . . . is the rotational quantum number. This potential also admits the exact
analytical solution of the rovibrational Schrödinger equation, being in a certain sense an
intermediate potential between the HO potential (an ideal potential) and the anharmonic
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potentials (the more realistic potentials). A comparative analysis of three-dimensional HO
potentials (HO-3D potentials) and the PHO is performed in [3].

Using Molski’s techniques [9] (for the Morse oscillator) we have rewritten the PHO
effective potential as follows [8]:

VJ (r) = mω2

8
r2
J

(
r

rJ
− rJ

r

)2

+
mω2

4
(r2
J − r2

0 ) (2)

where the changed equilibrium distance is

rJ =
[

2h̄

mω

(
α2 − 1

4

)1
2

] 1
2

(3)

and the new rotational parameter, α, which appears is defined as

α =
[(
J +

1

2

)2

+
(mω

2h̄
r2

0

)2
] 1

2

. (4)

Using this procedure, the rotational case (J �= 0) is implicitly reduced to the non-rotational
(J = 0) one and both cases can be examined together.

The corresponding rovibrational Schrödinger equation for the reduced radial function
uαv (r) is

Hα(r)u
α
v (r) ≡

[
− h̄2

2m

d2

dr2
+
mω2

8
r2
J

(
r

rJ
− rJ

r

)2
]
uαv (r) = (EvJ − Erot

eff )u
α
v (r) (5)

where v is the vibrational quantum number. In the right-hand side the effective rotational
energy appears:

Erot
eff = mω2

4
(r2
J − r2

0 ). (6)

It is evident that, from a mathematical point of view, equation (5) is similar to the reduced
radial Schrödinger equation for the isotropic HO-3D. This similarity will be of further use in
the construction of the corresponding lowering and raising operators for the PHO.

The HO-3D can be considered as a limit oscillator of the PHO. This limit is called the
harmonic limit of the PHO and for a certain physical observable A is defined as (see [6])

lim
ω→2ω0
r0→0

α→J+ 1
2

A ≡ lim
HO
A = A0 (7)

where the quantities without any index corresponds to the PHO, while the same quantities with
the index (0) corresponds to the HO-3D (with frequency ω0).

The radial eigenfunctions and eigenvalues have been calculated in [2]:

uαv (r) ≡ rRvJ (r) = 1

B

[
B3v!

2α�(v + α + 1)

] 1
2

(Br)α+ 1
2 exp

(
−B

2

4
r2

)
Lαv

(
B2

2
r2

)
(8)

EvJ = h̄ω

(
v +

1

2

)
+
h̄ω

2
α − mω2

4
r2

0 (9)

where we have used the notation

B =
(mω
h̄

)1
2
. (10)

Here�(x) is Euler’s gamma function andLαv (x) is the generalized Laguerre’s polynomial.
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The aim of this paper is to construct the coherent states (CS) of the PHO, particularly the
Barut–Girardello coherent states (BGCS). These states will be obtained as the eigenstates of the
lowering generatorK−. BGCS are of special importance due to their remarkable mathematical
properties and interesting physical applications, especially in quantum optics.

The plan of the paper is the following: we start in section 2 with the SU(1, 1) algebraic
treatment of the PHO, from which we discover the SU(1, 1) generators for this oscillator
potential. We have inserted a brief review of the properties which will be useful for the
ensuing calculations. In section 3 we construct the CS for the PHO, as the eigenstates of the
SU(1, 1)-generator K−. These states are, as we had expected, just the BGCS. By using these
states we have calculated, in section 4, some expectation values in the BGCS representation,
while in section 5 we have examined the statistical properties of a quantum gas of PHOs which
obeys the quantum canonical distribution. The discovery of the diagonal P -representation of
the density operator, which is the main result of this paper, allows us to calculate the thermal
expectation values of some physical observable concerning the PHO quantum canonical gas:
the internal energy, the entropy and the molar heat capacity. All these formulae so obtained
lead, in the harmonic limit, to the corresponding formulae for the HO-3D, because the HO-3D
is a particular case of the PHO (in the conditions of the harmonic limit). The last section
(section 6) is devoted to the time dependence of the BGCS. A brief discussion concludes the
paper.

2. SU (1, 1) algebraic treatment of the PHO

By using the substitution ω = 2ω0, let us rewrite equation (5):[
− h̄2

2m

d2

dr2
+
mω2

0

2
r2 +

mω2
0

2
r4
J

1

r2
− h̄ω0(2v + α + 1)

]
uαv (r) = 0. (11)

Passing to the dimensionless variable y = (
mω0
h̄

) 1
2 r = 1√

2
Br allows us to rewrite this

equation as follows:[
−1

2

d2

dy2
+

1

2
y2 +

1

2

(
α2 − 1

4

)
1

y2
− (2v + α + 1)

]
uαv (y) = 0 (12)

where appears the dimensionless reduced Hamiltonian H(red)
α of the PHO:

H(red)
α (y) = 1

h̄ω0
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0
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]
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. (13)

Following the procedure from [10] for HO-3D, we define the generators in a similar
manner:

W1 = 1
2y

2 (14)

W2 = − i

2

(
y

d

dy
+

1

2

)
(15)

W3 = −1

2

d2

dy2
+

1

2

(
α2 − 1

4

)
1

y2
(16)

with the commutators

[W1, W2] = iW1 [W2, W3] = iW3 [W1, W3] = 2iW2. (17)

We define the operators Ki (i = 1, 2, 3) as follows:

K1 = 1

2
(W3 −W1) = 1

2
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2
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+

1
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4
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2
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]
(18)
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K2 = W2 = − i
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K3 = 1

2
(W3 +W1) = 1

2
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4

)
1
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2
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]
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2
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α (y) (20)

which have the characteristic commutation relation for the Lie algebra corresponding to the
SU(1, 1) group:

[K1, K2] = −iK3 [K2, K3] = iK1 [K3, K1] = iK2. (21)

The SU(1, 1) group is the most elementary non-compact non-Abelian simple Lie group.
It is customary to use the raising and lowering generators of this group:

K± = K1 ± iK2 (22)

which satisfy the following commutation relations:

[K3, K±] = ±K± [K−, K+] = 2K3. (23)

The Casimir operatorK2 for any irreducible representation is the identity times a number:

K2 = K2
3 −K2

1 −K2
2 = k(k − 1) (24)

so, a representation of SU(1, 1) is determined by a single real number k (called the Bargmann
index).

Here, we are only interested in the unitary irreducible representations known as positive
discrete series, where k > 0. The corresponding state is spanned by the complete orthonormal
basis of the number state |v, k〉 (where v = 0, 1, 2, . . . ,∞ is the vibrational quantum number)
of the PHO Hilbert space:

〈v, k|v′, k〉 = δvv′

∞∑
v=0

|v, k〉〈v, k| = 1. (25)

The discrete representations of the SU(1, 1) group are given by

K2|v, k〉 = k(k − 1)|v, k〉 (26)

K+|v, k〉 =
√
(v + 1)(v + 2k)|v + 1, k〉 (27)

K−|v, k〉 =
√
v(v + 2k − 1)|v − 1, k〉. (28)

Let us now apply these general considerations concerning the SU(1, 1) group generators
to our interesting problem, i.e. to the PHO operators (22) and (20). The PHO realization of
the raising and lowering operators K± is

K± = 1

2
(W3 −W1) = 1

2

[
−1

2

d2

dy2
+

1

2

(
α2 − 1

4

)
1

y2
− 1

2
y2

]
± 1

2

(
y

d

dy
+

1

2

)
. (29)

In order to eliminate the second-order derivative, we use the rovibrational Schrödinger
equation (12) and we obtain

K± = 1

2

(
±y d

dy
± 1

2
− y2 + 2v + α + 1

)
. (30)

The dimensionless radial reduced eigenfunction uαv (y) (see, equation (8)) is

uαv (y) = Cαv 2
1
2 (α+ 1

2 )yα+ 1
2 exp

(− 1
2y

2
)
Lαv (y

2) (31)

where we used the following notation:

Cαv = 1

B

[
B3v!

2α�(v + α + 1)

] 1
2

. (32)
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Using the relation between the generalized Laguerre polynomials [11]:

x
d

dx
Lαv (x) = vLαv (x)− (v + α)Lαv−1(x) = (v + 1)Lαv+1(x)− (v + α + 1 − x)Lαv (x) (33)

we can easily demonstrate the equations

K+u
α
v (y) =

√
(v + 1)(v + α + 1)uαv+1(y) (34)

K−uαv (y) =
√
v(v + α)uαv−1(y). (35)

Comparing these equations with the equations (27) and (28) we obtain the following useful
connection:

α = 2k − 1 (36)

i.e. the rotational parameter α plays the role of the Bargmann index. Later in this paper, we
will use the k-index instead of the α-index.

For the vibrational ground state (v = 0) we can demonstrate that the equation

K−uα0 (y) = 0 (37)

is also satisfied.
The properties of the K± and K3 generators allow us to construct the CS corresponding

to the PHO.

3. CS of PHO

Following the Barut and Girardello procedure [12], let us construct the eigenstates of the
lowering generator K−:

K−|z, k〉 = z|z, k〉 (38)

where z is an arbitrary complex number.
One can represent the eigenstates |z, k〉 as the superposition of the complete orthonormal

basis |v, k〉 of the PHO Hilbert space:

|z, k〉 =
∞∑
v=0

〈v, k|z, k〉|v, k〉. (39)

Let the operator K− act on equation (39). Then, using equations (38) and (28) and the
orthonormality relation (25), we have the following result:

〈v, k|z, k〉 = z√
v(v + 2k − 1)

〈v − 1, k|z, k〉 (40)

which, after the recurrence procedure, becomes

〈v, k|z, k〉 = zv

√
�(2k)

v!�(v + 2k)
〈0, k|z, k〉. (41)

By normalizing to unity the states |z, k〉 and using the relation (see [13])
∞∑
v=0

x2v

v!�(v + ν + 1)
= 1

xν
Iν(2x) (42)

where Iν(x) is the modified Bessel function of order ν, we have

〈0, k|z, k〉 =
√

|z|2k−1

I2k−1(2|z|)�(2k) (43)
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i.e., finally, the eigenstates |z, k〉 become

|z, k〉 =
√

|z|2k−1

I2k−1(2|z|)
∞∑
v=0

zv√
v!�(v + 2k)

|v, k〉. (44)

These states are, evidently, the BGCS [12, 14–16].
Consequently, the CS which corresponds to the PHO are just the BGCS.
It is demonstrated (see, e.g. [12] or [14]) that these states are normalized but not orthogonal

and that the following resolution of the identity holds:∫
dµ (z, k)|z, k〉〈z, k| = 1 (45)

with the measure

dµ (z, k) = 2

π
K2k−1(2|z|)I2k−1(2|z|) d2z d2z = d(Re z) d(Im z). (46)

The function Kν(x) is the ν-order modified Bessel function of the second kind.
Here and below, all the integrals are performed over the whole complex z plane, where

z = r exp (iϕ) r ∈ [0,∞) ϕ ∈ [0, 2π ]. (47)

The resolution of the identity is easy to demonstrate by using the following integral [11]:∫ ∞

0
dx xµKν(ax) = 2µ−1a−µ−1�

(
1 + µ + ν

2

)
�

(
1 + µ− ν

2

)
Re (µ + 1 ± ν) > 0,Re a > 0.

(48)

As we see, the BGCS are not orthogonal:

〈σ, k|z, k〉 = I2k−1(2
√
σ ∗z)√

I2k−1(2|σ |)I2k−1(2|z|) (49)

where σ is also an arbitrary complex number.

4. Expectation values

Using equation (44), the expectation value of a physical observableA, which characterizes the
PHO, with respect to the BGCS |z, k〉 is easy to obtain:

〈z, k|A|z, k〉 ≡ 〈A〉z,k = |z|2k−1

I2k−1(2|z|)
∞∑

v,n=0

(z∗)n zv√
v!�(v + 2k)n!�(n + 2k)

〈n, k|A|v, k〉. (50)

In order to calculate different expectation values it is useful to evaluate the sum Sn, with
n = 0, 1, 2, . . . (see the appendix):

Sn =
∞∑
v=0

(x2)v

v!�(v + ν + 1)
vn. (51)

First, let us calculate the expectation values of the operators Ki (i = 1, 2, 3). Using the
above equation, it is easy to prove that

〈K−〉z,k = z 〈K+〉z,k = z∗ (52)

〈K1〉z,k = 1
2 〈K− +K+〉z,k = 1

2 (z + z∗) = Re z (53)

〈K2〉z,k = i

2
〈K− −K+〉z,k = i

2
(z− z∗) = −Im z. (54)
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For the generator K3 and its second power K2
3 , by applying equation (50) and using

equation (20), we obtain

〈K3〉z,k = |z|2k−1

I2k−1(2|z|) (S1 + kS0) = |z| I2k(2|z|)
I2k−1(2|z|) + k (55)

〈K2
3 〉z,k = |z|2k−1

I2k−1(2|z|)
(
S2 + 2kS1 + k2S0

)
= k2 + (2k + 1)|z| I2k(2|z|)

I2k−1(2|z|) + |z|2 I2k+1(2|z|)
I2k−1(2|z|) (56)

where we used the expressions for S0, S1 and S2 from the appendix.
It is well known that the number operator N is defined as the operator which diagonalize

the basis for the number states:

N |v, k〉 = v|v, k〉. (57)

Then, the expectation values for the number operator and its second power are

〈N〉z,k = 〈K3 − k〉z,k = |z| I2k(2|z|)
I2k−1(2|z|) (58)

〈N2〉z,k = 〈K2
3 − 2kN − k2〉z,k = |z| I2k(2|z|)

I2k−1(2|z|) + |z|2 I2k+1(2|z|)
I2k−1(2|z|) . (59)

The intensity correlation function, defined as in [14], is

g2
z,k = 〈N2〉z,k − 〈N〉z,k

〈N〉2
z,k

= I2k−1(2|z|)I2k+1(2|z|)
[I2k(2|z|)]2 . (60)

For two limiting cases of the |z| variable, i.e. for |z| � 1 and |z| � 1, using the well
known approximations for the modified Bessel function Iν(x) (see [11])

Iν(x) � 1

�(ν + 1)

(x
2

)ν
respectively Iν(x) = ex√

2πx

[
1 + O

(
1

x

)]
(61)

we obtain for the intensity correlation function the following expressions:

g
(2)
z,k � 2k

2k + 1
respectively g

(2)
z,k � 1. (62)

So, for small values of |z|, the intensity correlation function is smaller than unity, for all k
values. The corresponding BG states have sub-Poissonian statistics, while for large |z|, these
states tend to have Poissonian statistics [14].

5. Statistical properties

In this section we will carry out a detailed discussion on the statistical properties of the BGCS
for the PHO. We consider a quantum gas of the PHOs in thermodynamic equilibrium with the
reservoir (the thermostat) at temperatureT , which obeys the quantum canonical distribution [6].
The corresponding normalized density operator for a fixed rotational quantum number J (or,
equivalently, for a fixed number k) is then

ρJ ≡ ρk = 1

Zk

∞∑
v=0

e−βEvJ |v, k〉〈v, k| (63)

where ZJ = Zk is the normalization constant, i.e. the partition function for a certain rotational
state J .
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The diagonal elements of the density operator in the BGCS representation are

〈z, k|ρJ |z, k〉 ≡ 〈ρk〉z,k = 1

Zk

|z|2k−1

I2k−1(2|z|)
∞∑
v=0

e−βEvJ
(|z|2)v

v!�(v + 2k)
(64)

where we have used equations (44) and (25).
Finally, using equations (9) and (42) we get

〈z, k|ρk|z, k〉 = 1

Zk
e−β(h̄ω0−mω2

0r
2
0 )
I2k−1(2|z|e−βh̄ω0)

I2k−1(2|z|) . (65)

By normalizing the density operator to unity, i.e.

Tr ρk =
∫

dµ (z, k)〈z, k|ρk|z, k〉 = 1 (66)

and using an integral of the following kind [11]:∫ ∞

0
dx x−λKµ(ax)Iν(bx) = bν�

(
1
2 − 1

2λ + 1
2µ + 1

2ν
)
�
(

1
2 − 1

2λ− 1
2µ + 1

2ν
)

2λ+1�(ν + 1)a−λ+ν+1

×F
(

1

2
− 1

2
λ +

1

2
µ +

1

2
ν,

1

2
− 1

2
λ− 1

2
µ +

1

2
ν; ν + 1; b

2

a2

)
Re (ν + 1 − λ± µ) > 0, a > b (67)

we obtain the expression for the partition function

Zk = e−β(h̄ω0−mω2
0r

2
0 )−βh̄ω0(2k−1)F

(
2k, 1; 2k; e−2βh̄ω0

)
. (68)

The degenerate hypergeometric function has the property (see [17])

F(β, α;β; x) = F(α, β;β; x) = (1 − x)−α (69)

and, finally, the partition function is

Zk = eβmω
2
0r

2
0 −βh̄ω0(2k−1) 1

2 sinh βh̄ω0
. (70)

This is, of course, the same expression that was obtained in [8] (equation (41)), by using
the trace of the PHO density matrix in the position representation.

Consequently, the diagonal elements of the density matrix (65) may be written as

〈z, k|ρk|z, k〉 = 2eβh̄ω0(2k−2) sinh βh̄ω0
I2k−1(2|z|e−βh̄ω0)

I2k−1(2|z|) . (71)

Let us now perform the diagonal expansion of the density operator ρk in the BGCS:

ρk =
∫

dµ (z, k) Pk(z)|z, k〉〈z, k|. (72)

For the Glauber CS |α〉 of the HO this expansion is called the Glauber–Sudarshan P -
representation of the density operator [18]. In [14] it is shown that the diagonal representation
of the density operator is well behaved for describing non-classical states of light.

In order to find the function Pk(z) let us begin with the diagonal elements of the density
operator ρk in the basis of the number states |v, k〉:

〈v, k|ρk|v, k〉 =
∫

2
d2z

π
K2k−1(2|z|)I2k−1(2|z|)Pk(z)〈v, k|z, k〉〈z, k|v, k〉 (73)

where these diagonal elements are well known (see, equations (63) and (70)):

〈v, k|ρk|v, k〉 = 1

Zk
e−βEvJ = (1 − e−2βh̄ω0)[(eβh̄ω0)2]v (74)
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as well as the functions

〈v, k|z, k〉 =
√

|z|2k−1

I2k−1(2|z|)
zv√

v!�(v + 2k)
. (75)

Then, equation (73) becomes

(1 − e−2βh̄ω0)[(e−βh̄ω0)2]v = 2

v!�(v + 2k)

∫
2

d2z

π
K2k−1(2|z|)Pk(z)|z|2k−1+2v. (76)

It is possible to choose intuitively an expression for Pk(z), as is performed in [14]. But,
we will choose the function Pk(z) to have a similar expression as the diagonal elements of the
density operator in BGCS (see, equation (71)):

Pk(z) = C
K2k−1(2|z|A)
K2k−1(2|z|) (77)

where the normalization constant C and the constant A must be determined.
Using the integral (see, equation (48)) we easily find the required expression:

Pk(z) = (
e2βh̄ω0 − 1

)
eβh̄ω0(2k−1) K2k−1(2|z|eβh̄ω0)

K2k−1(2|z|) . (78)

Of course, this function satisfies the normalization condition∫
dµ (z, k) Pk(z) = 1 (79)

which is not difficult to prove.
In this manner, the diagonal representation of the normalized density operator of the PHO

in BGCS is

ρk = (e2βh̄ω0 − 1)eβh̄ω0(2k−1)
∫

dµ (z, k)
K2k−1(2|z|eβh̄ω0)

K2k−1(2|z|) |z, k〉〈z, k|. (80)

Then the thermal expectation value (the thermal average) of an observable A concerning
the PHO is given by

〈A〉k = Tr(ρkA) =
∫

dµ (z, k) Pk(z)〈z, k|A|z, k〉. (81)

For example, the thermal expectation value of the number operator, N , is

〈N〉k =
∫

dµ (z, k) Pk(z)〈z, k|N |z, k〉. (82)

By using the equations (58), (68) and (69) we find that it is independent of the Bargmann
index k:

〈N〉k = 1

e2βh̄ω0 − 1
≡ 〈N〉. (83)

This is the same expression as the Bose–Einstein thermal distribution and, consequently,
the PHO is suitable for association with a boson (e.g. a photon).

Similarly, using equations (59), (68) and (69), the thermal expectation value of the square
of the number operator becomes

〈N2〉k = 1

e2βh̄ω0 − 1
+ 2

1(
e2βh̄ω0 − 1

)2 ≡ 〈N2〉 (84)

also independent of the index k.
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We can now define the thermal intensity correlation function, which, after the calculations
above, is also independent of the index k:

〈g2〉k ≡ 〈N2〉 − 〈N〉
〈N〉2

= 〈g2〉 = 2. (85)

The normalized density operator characterizes the quantum gas of PHOs, regarded as the
whole quantum system, is

ρ = 1

Z

∑
J

(2J + 1)ZJρJ (86)

where ρJ ≡ ρk is the diagonal representation of the density operator for (see, equation (80))
the rotational state J .

Consequently, the total thermal expectation value of an observable A is

〈A〉 = TrAρ = 1

Z

∑
J

(2J + 1)ZJ TrAρJ (87)

where TrAρJ = 〈A〉J = 〈A〉k is the expectation value for the rotational state J (see,
equation (81)).

Similarly, the total partition function is

Z =
∑
J

(2J + 1)
∑
v

e−βEvJ =
∑
J

(2J + 1)ZJ . (88)

Using equation (70), the total partition function becomes

Z = eβmω
2
0r

2
0Z

(0)
1 Tα(x) (89)

where we have used the notation

Tα(x) =
∞∑
J=0

(2J + 1)e−xα x = βh̄ω0 (90)

and, also, the notation for the one-dimensional HO (HO-1D) partition function:

Z
(0)
1 = 1

2 sinh βh̄ω0
= 1

2 sinh x
. (91)

By applying the harmonic limit (7) to equation (90), we obtain

lim
HO
Tα = TJ+ 1

2
= 2

∑
J

(
J +

1

2

)
e−x(J+ 1

2 ) = 1

2

1

sinh2 x
2

cosh
x

2
. (92)

Then, the harmonic limit of the total partition function (89) is

lim
HO
Z = 1

2 sinh x
TJ+ 1

2
=
(

1

2 sinh β h̄ω0
2

)3

≡ (
Z
(0)
1

)3
(93)

i.e., we obtain the partition function for the HO-3D, as we expected [6].
The internal energy of the whole quantum gas of the Ntot PHOs is

U = Ntot〈H 〉 = Ntot
1

Z

∑
J

(2J + 1)ZJ 〈H 〉J (94)

and using equations (13), (20) and (55), after integration, we obtain

U = −Ntotmω
2
0r

2
0 +Ntoth̄ω0

[
coth βh̄ω0 − ∂

∂x
ln Tα

]
(95)
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where Ntot is the total number of the PHO in the quantum gas. This result is the same as the
one in [8], where we have used the position representation of the PHO density matrix.

The entropy of the whole quantum gas is

S = −kB〈ln ρ〉 = kB (lnZ + β〈H 〉) (96)

where we have taken into account that the quantum distribution is canonical and, consequently,
the density operator is proportional to exp (−βH). After the calculations, we obtain the
following expression:

S = kB (βh̄ω0 coth βh̄ω0 − ln 2 sinh βh̄ω0) + kB

(
ln Tα − βh̄ω0

∂

∂x
ln Tα

)
. (97)

Finally, the molar heat capacity at the constant volume

CV = 1

ν

∂U

∂T
= −1

ν
kBβ

2 ∂U

∂β
(98)

is easily obtained:

CV

R
=
[( x

sinh x

)2
+ x2 ∂

2

∂x2
(ln Tα)

]
. (99)

In order to verify the above-obtained formulae for the thermal expectation values of the
PHO observables, let us apply the harmonic limit (7) to these formulae. In order to calculate
the harmonic limit we need to calculate the expression

∂

∂x
ln TJ+ 1

2
= − coth

x

2
+

1

2

1

coth x
2

. (100)

After straightforward calculations, we successively obtain

lim
HO
U = 3Ntot

h̄ω0

2
coth β

h̄ω0

2
= 3Ntot

[
h̄ω0

2
+

h̄ω0

eβh̄ω0 − 1

]
≡ 3U(0)

1 (101)

lim
HO
S = 3kB

[
β

(
h̄ω0

2
+

h̄ω0

eβh̄ω0 − 1

)
− ln 2 sinh β

h̄ω0

2

]
≡ 3S(0)1 (102)

lim
HO

CV

R
= 3

(
β h̄ω0

2

sinh β h̄ω0
2

)2

≡ 3
C
(0)
V ;1
R

(103)

where the notation A(0)1 represents the corresponding quantity for the HO-1D.
We will point out here that these formulae are the same as those derived from the use of the

position representation of the PHO density matrix (see, [6]). This fact demonstrates that the
BGCS for the PHO are correct, as well as our obtained formula for the diagonal representation
of the density operator in these states (80).

6. The time dependence of the BGCS

At the end of this paper we will refer to the time dependence of the BGCS. Using equation (44)
and the radial Schrödinger equation for the PHO,

Hk|v, k〉 = [h̄ω0(2v + 2k)−mω2
0r

2
0 ]|v, k〉 (104)

we obtain the time dependence of the BGCS as follows:

|z, k; t〉 = e− i
h̄
Hkt |z, k; 0〉 (105)
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where we have

Hk ≡ Hα = h̄ω0H
(red)
α (y) = h̄ω0

(
2K3 − mω0

h̄
r2

0

)
(106)

and |z, k; 0〉 ≡ |z, k〉.
The action of the operator K3 on the states |z, k; 0〉 reduces to the action of the same

operator on the number states |v, k〉 (see, equation (26)). After the calculations we obtain

|z, k; t〉 = exp

[
i

h̄
(mω2

0r
2
0 − h̄ω0 2k)t

]√ |z|2k−1

I2k−1(2|z|)
∞∑
v=0

(
ze−2iω0t

)v
√
v!�(v + 2k)

|v, k〉. (107)

When we use the notation

z(t) = ze−2iω0t (108)

we obtain

|z(t), k〉 =
√

|z(t)|2k−1

I2k−1(2|z(t)|)
∞∑
v=0

[z(t)]v√
v!�(v + 2k)

|v, k〉. (109)

By inserting v = 0 into equation (9), we obtain the energy for the ground vibrational state

E0J = h̄ω0 2k −mω2
0r

2
0 . (110)

In this manner, we obtain the following time dependence of the BGCS:

|z, k; t〉 = e− i
h̄
E0J t |z(t), k〉. (111)

The properties and applications of the time-dependent BGCS will be the subject matter
of a forthcoming paper.

7. Conclusion remarks

The PHO is an interesting oscillator model not only for its spectral properties, in good
agreement with the experimental data, but also due to the fact that as the limiting case of
the PHO we obtain the HO-3D. In other words, by applying the harmonic limit to an equation
or formula concerning the PHO (7) we obtain the corresponding equation or formula for the
HO-3D. This is a suitable method for verifying the correctness of the equations or formulae
for the PHO thus obtained, and at the same time for testing new methods, procedures and
concepts.

In this paper we achieved the implementation of the BGCS in the case of the PHO
Hamiltonian. We have shown that the symmetry group which corresponds to the PHO
Hamiltonian is the SU(1, 1) group. As a consequence, we constructed the CS as the eigenstates
of the group generatorK−, i.e. the BGCS for the PHO. By using these CS we calculated some
expectation values in the BGCS representation for some physical observables concerning the
PHO. As a result we obtained that, for small |z|, the corresponding statistic distribution is
sub-Poissonian, while for |z| large it is Poissonian.

In section 5 of the paper we examined the statistical properties of the PHO; i.e., we
have constructed the density matrix in the BGCS representation and, especially, its diagonal
representation. In our opinion this seems to be a new result, because, to our knowledge, this
result has not yet appeared in the literature. In order to prove the correctness of the expression
we obtained for the diagonal representation of the density operator ρ, we calculated some
thermal expectation values (thermal averages) for few observables of concern for the PHO (i.e.
the number operator, internal energy, entropy and CV ). By applying the harmonic limit (7) to
these averages we obtained the corresponding averages for the HO-3D. It was to be expected. It
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seems that one of the advantages of the use of the BGCS representation consists in the relative
simplicity of the mathematical calculations, versus the corresponding calculations using the
position representation of the density operator [8].
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Appendix

We consider the general sum

Sn ≡
∞∑
v=0

(x2)v

v!�(v + ν + 1)
vn (A.1)

which, in the particular case n = 0, according to equation (42), is

S0 = 1

xν
Iν(2x). (A.2)

On the other hand, from the well known relation [13]

d

dx

[
1

x
Iν(x)

]
= 1

xν
Iν+1(x) (A.3)

we obtain

S1 = x2 d

d(x2)
S0 = 1

2
(2x)

d

d(2x)
S0 = x

1

xν
Iν+1(2x). (A.4)

To calculate the sumS2 it is useful to write the power v2 as v2 = v(v−1)+v. Consequently,
the result becomes

S2 =
∞∑
v=0

(x2)v

v!�(v + ν + 1)
v2 = (x2)2

(
d

d(x2)

)2

S0 + x2 d

d(x2)
S0. (A.5)

After straightforward calculation, we obtain

S2 = x
1

xν
Iν+1(2x) + x2 1

xν
Iν+2(2x). (A.6)
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